skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "and Putot, Sylvie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less